6 research outputs found

    Dynamic programming with recursive preferences

    Get PDF
    There is now a considerable amount of research on the deficiencies of additively separable preferences for effective modelling of economically meaningful behaviour. Through analysis of observational data and the design of suitable experiments, economists have constructed progressively more realistic representations of agents and their choices. For intertemporal decisions, this typically involves a departure from the additively separable benchmark. A familiar example is the recursive preference framework of Epstein and Zin (1989), which has become central to the quantitative asset pricing literature, while also finding widespread use in applications range from optimal taxation to fiscal policy and business cycles. This thesis presents three essays which examine mathematical research questions within the context of recursive preferences and dynamic programming. The focus is particularly on showing existence and uniqueness of recursive utility processes under stationary and non-stationary consumption growth specifications, and on solving the closely related problem of optimality of dynamic programs with recursive preferences. On one hand, the thesis has been motivated by the availability of new and unexploited techniques for studying the aforementioned questions. The techniques in question primarily build upon an alternative version of the theory of monotone concave operators proposed by Du (1989, 1990). They are typically well suited to analysis of dynamic optimality with a variety of recursive preference specifications. On the other hand, motivation also comes from the demand side: while many useful results for dynamic programming within the context of recursive preferences have been obtained by existing literature, suitable results are still lacking for some of the most popular specifications for applied work, such as common parameterizations of the Epstein-Zin specification, or preference specifications that incorporate loss aversion and narrow framing into the Epstein-Zin framework, or the ambiguity sensitive preference specifications. In this connection, the thesis has sought to provide a new approach to dynamic optimality suitable for recursive preference specifications commonly used in modern economic analysis. The approach to examining the problems of dynamic programming exploits the theory of monotone convex operators, which, while less familiar than that of monotone concave operators, turns out to be well suited to dynamic maximization. The intuition is that convexity is preserved under maximization, while concavity is not. Meanwhile, concavity pairs well with minimization problems, since minimization preserves concavity. By applying this idea, a parallel theory for these two cases is established and it provides sufficient conditions that are easy to verify in applications

    A Chemical Lost Circulation Agent for Severe Leakage in Drilling

    No full text

    Effect of elevated pressure on gas-solid flow properties in a powder feeding system

    No full text
    In view of the powder feeding system, a multi-physical coupling model of the gas-powder-piston was established based on the Euler-Euler two-fluid model. The numerical simulation method was applied to explore the effects of dense gas-solid flow characteristics under different operating pressures. The results show that gas-solid pulsations at different operating pressures are mainly concentrated in the upper part of the powder tank. An elevated operating pressure efficiently decreases the powder layer area (εp = 0.1) fluctuation. As the operating pressure increases from 0.5 MPa to 3.0 MPa, the rising time and fluctuation rate of pressure are reduced by 71.4% and 62.3%, respectively, and the pressure in the tank has a long stabilization period. Meanwhile, the variation of the instantaneous powder flow rate is more stable and its average value is closer to the theoretical. A high-pressure environment is more conducive to the stable transportation of powder

    RNA-Seq Analysis of Influenza A Virus-Induced Transcriptional Changes in Mice Lung and Its Possible Implications for the Virus Pathogenicity in Mice

    No full text
    The influenza A virus (IAV) is an important cause of respiratory disease worldwide. It is well known that alveolar epithelial cells are the target cells for the IAV, but there is relatively limited knowledge regarding the role of macrophages during IAV infection. Here, we aimed to analyze transcriptome differences in mouse lungs and macrophage (RAW264.7) cell lines infected with either A/California/04/2009 H1N1 (CA09) or A/chicken/SD/56/2015 H9N2 (SD56) using deep sequencing. The uniquely differentially expressed genes (UDEGs) were analyzed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases; the results showed that the lungs infected with the two different viruses had different enrichments of pathways and terms. Interestingly, CA09 virus infection in mice was mostly involved with genes related to the extracellular matrix (ECM), while the most significant differences after SD56 infection in mice were in immune-related genes. Gene set enrichment analysis (GSEA) of RAW264.7 cells revealed that regulation of the cell cycle was of great significance after CA09 infection, whereas the regulation of the immune response was most enriched after SD56 infection, which was consistent with analysis results in the lung. Similar results were obtained from weighted gene co-expression network analysis (WGCNA), where cell cycle regulation was extensively activated in RAW264.7 macrophages infected with the CA09 virus. Disorder of the cell cycle is likely to affect their normal immune regulation, which may be an important factor leading to their different prognoses. These results provide insight into the mechanism of the CA09 virus that caused a pandemic and explain the different reactivities of monocytes/macrophages infected by H9N2 and H1N1 IAV subtypes
    corecore